

HT9170 Series Tone Receiver

Features

- Operating voltage: 2.5V~5.5V
- Minimal external components
- No external filter is required
- Low standby current (Power-down mode)

General Description

The HT9170 series are Dual Tone Multi Frequency (DTMF) receivers integrated with digital decoder and bandsplit filter functions. The HT9170B and HT9170D types supply powerdown mode and inhibit mode operations. All types of the HT9170 series use digital counting techniques to detect and decode all the 16

- Excellent performance
- Tri-state data output for μC interface use
- 3.58MHz crystal or ceramic resonator
- 1633Hz can be inhibited by INH pin

DTMF tone pairs into a 4-bit code output.

While the high-accuracy switched capacitor filters are employed to divide tone (DTMF) signal into low and high group signals. A built-in dial tone rejection circuit is provided to eliminate the need for pre-filtering.

Pin Assignment

		N 1			
	,	VP 🗖 1 🎽	20 🛛 VDD		,
VP 🛛 1 🎽	18 🛛 VDD	VN 🗖 2	19 🗖 RT/GT	VPd1	
VN 🗖 2	17 🗅 RT/GT	GS 🗖 3	18 🗖 EST	VN 🗖 2	17 🗖 RT/GT
GS 🗖 3	16 🗖 EST	VREF 🗖 4	17 🗖 DV	GS 🗖 3	16 🗖 EST
VREF 🗖 4	15 🗖 DV	NC 🗖 5	16 🗖 NC	VREF 🗖 4	15 🗖 DV
NC 🗖 5	14 🗖 D3	NC 🗖 6	15 🗖 D3	INH 🗖 5	14 🗖 D3
NC 🗖 6	13 🗖 D2		14 🗖 D2	PWDN 🗖 6	13 🗖 D2
X1 🗖 7	12 🗖 D1	X1 🗖 8	13 🗖 🗗 1	X1 🗖 7	12 🗖 D1
X2 🗖 8	11 🗖 🖸 0	X2 🗖 9	12 🗖 D0	X2 🗖 8	11 🗖 D0
vss 🗖 🤋	10 🗖 OE	VSS 🗖 10	11 🗖 OE	VSS 🗖 9	10 🗖 OE
НТ9	170	HT9 ⁴	170A	HT9	170B
– 18	DIP	- 20	SOP	– 18	DIP
		,			
GSLI 3					
	15 L DV		15 L DV		
	14 L D3		14 🛛 D3		
	13 🗖 D2		13 🗖 D2		
X1 🛛 7	12 🛛 D1	X1 🛛 7	12 🛛 D1		
X2 🗖 8	11 🛛 🗗 🖸	X2 🗖 8	11 🗆 🗅		
vss 🗖 🤋	10 🏳 OE	VSS 🗖 9	10 🏳 OE		
HT91	70C	HT91	70D		
- 18 \$	SOP	- 18 \$	SOP		

1

Block Diagram

Pin Description

Pin Name	I/O	Internal Connection	Description					
VP	Ι		Non-inverting input of operational amplifier					
VN	Ι	OPERATIONAL AMPLIFIER	AL R Inverting input of operational amplifier					
GS	0		Output terminal of operational amplifier					
VREF	0	VREF	Reference voltage output, normally VDD/2					
X1	Ι		The system oscillator consists of an inverter, a bias resistor and the necessary load capacitor on chip.					
X2	0	USCILLATOR	Connecting a standard 3.579545MHz crystal to X1 and X2 terminals can implement the oscillator function.					
PWDN	Ι	CMOS IN Pull-Low	Logic high, power down the device and inhibits the oscillator. This pin is internally pulled down.					
INH	Ι	CMOS IN Pull-Low	Logic high inhibits the detection of tones representing characters A, B, C and D. This pin input is internally pulled down.					
VSS	Ι		Negative power supply					
OE	Ι	CMOS IN Pull-High	D0~D3 output enable, high active					
D0~D3	0	CMOS OUT Tri-State	Output terminals of receiving data OE="H": Output enable OE="L": High impedance					

2

Pin Name	I/O	Internal Connection	Description
DV	0	CMOS OUT	Data valid output When the chip receives a valid tone (DTMF) signal the DV goes high; otherwise the DV remains low.
EST	0	CMOS OUT	Early steering output (see Functional Description)
RT/GT	I/O	CMOS IN/OUT	Tone acquisition time and release time can be set through connection with external resistor and capacitor.
VDD	Ι	_	Positive power supply, 2.5V~5.5V for normal operation

Approximate internal connection circuits

Absolute Maximum Ratings*

Supply Voltage0.3V to 6V	Storage Temperature50°C to 125°C
Input Voltage V_{SS} –0.3V to V_{DD} +0.3V	Operating Temperature20°C to 75°C

*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3

D.C. Characteristics

(Ta=25°C)

Shal	Donomotor	1	Test Conditions	Min	T	Mari	T Inc.ª4
Symbol	Parameter	VDD	Conditions	wiin.	тур.	max.	Unit
V _{DD}	Operation Voltage		_	2.5	5	5.5	V
I _{DD}	Operation Current	5V		_	3.0	7	mA
I _{STB}	Standby Current	5V	PWDN=5V	_	10.5	_	μΑ
V _{IL}	"Low" Input Voltage	5V	_	_	_	1.0	V
VIH	"High" Input Voltage	5V	_	4.0	_	_	V
I _{IL}	"Low" Input Current	5V	V _{VP} =V _{VN} =0V	_	_	0.1	μΑ
I _{IH}	"High" Input Current	5V	V _{VP} =V _{VN} =5V	_	—	0.1	μΑ
R _{OE}	Pull-High Resistance (OE)	5V	V _{OE} =0V	60	100	150	kΩ
R _{PD}	Pull-Low Resistance (for Power Down)	5V		_	480		kΩ
R _{IN}	Input Impedance (VN, VP)	5V	_	_	10		MΩ
I _{OH}	Source Current (D0~D3, EST, DV)	5V	V _{OUT} =4.5V	-0.4	-0.8	_	mA
I _{OL}	Sink Current (D0~D3, EST, DV)	5V	V _{OUT} =0.5V	1.0	2.5	_	mA
Fosc	System Frequency	5V	Crystal=3.5795MHz	3.5759	3.5795	3.5831	MHz

A.C. Characteristics: Using Test Circuit of Figure 1.

(Ta=25°C)

Parameter	VDD	Min.	Тур.	Max.	Unit	
Input Signal Laval	3V	-36	—	-6	dBm	
	5V	-29	_	1		
Twist Accept Limit (Positive)	5V	_	10	_	dB	
Twist Accept Limit (Negative)	5V	_	10	_	dB	
Dial Tone Tolerance	5V	_	18	_	dB	
Noise Tolerance	5V	_	-12	_	dB	
Third Tone Tolerance	5V	_	-16	_	dB	
Frequency Deviation Acception	5V	_	_	±1.5	%	
Frequency Deviation Rejection	5V	±3.5			%	
Power Up Time (t _{PU}) (See Figure 4.)	5V	—	30		ms	

4

Gain Setting Amplifier Characteristics

(Ta=25°C)

Symbol	Davamatar		Test Conditions	Min	Tun	Mox	Unit	
Symbol	r ai ameter	VDD	Conditions	191111.	Typ.	IVIAX.	Umt	
R _{IN}	Input Resistance	5V	—	_	10	_	MΩ	
I _{IN}	Input Leakage Current	5V	V _{SS} <(V _{VP} ,V _{VN}) <v<sub>DD</v<sub>	_	0.1	_	μΑ	
Vos	Offset Voltage	5V	_	_	±25	_	mV	
PSRR	Power Supply Rejection	5V		_	60	_	dB	
CMRR	Common Mode Rejection	5V	100 Hz -3V <vin<3v< td=""><td>_</td><td>60</td><td>_</td><td>dB</td></vin<3v<>	_	60	_	dB	
A _{VO}	Open Loop Gain	5V		_	65	_	dB	
f _T	Gain Band Width	5V	—	_	1.5		MHz	
VOUT	Output Voltage Swing	5V	$R_L > 100 k\Omega$	_	4.5	_	VPP	
RL	Load Resistance (GS)	5V	—	_	50	_	kΩ	
CL	Load Capacitance (GS)	5V	—	_	100	_	PF	
VCM	Common Mode Range	5V	No load	_	3.0	_	VPP	

5

Functional Description

Overview

The HT9170 series are tone decoders. They consist of three band pass filters and two digital decode circuits to convert tone (DTMF) signal into digital code output.

An operational amplifier is built-in to adjust the input signal for users (refer to Figure 2.).

(b) Differential input circuit

Figure 2. Input operation amplifier application circuits

The pre-filter is a band rejection filter which reduces the dialing tone which is from 350Hz to 400Hz.

The low group filter filters low group frequency signal output whereas the high group filter filters high group frequency signal output.

Each filter output is followed by a zero-crossing detector with hysteresis. When each signal amplitude at the output exceeds the specified level, it is transferred to full swing logic signal.

When input signals are recognized to be effective, DV becomes high, and the correct code of tone (DTMF) digit is transferred.

Steering control circuit

The steering control circuit is used for measureing the effect signal duration and for protecting against the drop out of valid signals. It employs the analog delay by external RC time-constant controlled by EST.

The timing is shown in Figure 3. The EST pin is normally low and draws the RT/GT pin to keep low through discharge of external RC. When a valid tone input is detected, EST goes high to charge RT/GT through RC.

When the voltage of RT/GT changes from 0 to V_{TRT} (2.35V for 5V supply), the input signal is effective, and the correct code will be created by code detector. After D0~D3 are completely latched, DV output becomes high. When the voltage of RT/GT falls down from VDD to V_{TRT} (ie., the input tone is absent), DV output becomes low, and D0~D3 keep data until next valid tone input is yielded.

By selecting adequate external RC value the minimum acceptable input tone duration (t_{ACC}) and the minimun acceptable inter-tone rejection (t_{IR}) can be set by users. External components (R, C) are chosen by the formula (refer to Figure 5.):

tACC=tDP+tGTP;

tir=tda+tgta;

where t_{ACC}: Tone duration acceptable time

 t_{DP} : EST output delay time ("L" \rightarrow "H") t_{GTP} : Tone present time

t_{IR}: Inter-digit pause reject time

t_{DA}: EST output delay time ("H" \rightarrow "L")

t_{GTA}: Tone absent time

6

Figure 4. Power up timing

7

Timing Description: Using test circuit of Figure 1.

(Fosc=3.5795MHz, Ta=25°C)

Symbol	Parameter	Min.	Тур.	Max.	Units
t _{DP}	Tone Present Detection Time	5	16	22	ms
tDA	Tone Absent Detection Time		4	8.5	ms
t _{ACC}	Acceptable Tone Duration	_	_	42	ms
t _{REJ}	Rejected Tone Duration	20			ms
tIA	Acceptable Inter-digit Pause		_	42	ms
t _{IR}	Rejected Inter-digit Pause	20	_	_	ms
tpdo	Propagation Delay (RT/GT to DO)		8	11	μs
tPDV	Propagation Delay (RT/GT to DV)		12		μs
t _{DOV}	Output Data Set Up (DO to DV)	_	4.5	_	μs
tddo	Disable Delay (OE to DO)		50	60	ns
t _{EDO}	Enable Delay (OE to DO)		300		ns

Note: DO=D0~D3.

(a) Fundamental circuit: $t_{GTP} = R \bullet C \bullet Ln (V_{DD} / (V_{DD} - V_{TRT}))$ $t_{GTA} = R \bullet C \bullet Ln (V_{DD} / V_{TRT})$

(b) $t_{GTP} < t_{GTA}$: $t_{GTP} = (R1 // R2) \bullet C \bullet Ln (V_{DD} - V_{TRT}))$ $t_{GTA} = R1 \bullet C \bullet Ln (V_{DD} / V_{TRT})$

Figure 5. Steering time adjust circuits

 $(c) \ t_{GTP} > t_{GTA} : \\ t_{GTP} = R1 \bullet C \bullet Ln \ (V_{DD} / (V_{DD} - V_{TRT})) \\ t_{GTA} = (R1 \ // \ R2) \bullet C \bullet Ln \ (V_{DD} / V_{TRT})$

8th Aug '97

8

Tone (DTMF) Dialing Matrix

COL1 COL2 COL3 COL4								
ROW1	1	2	3	A				
ROW2	4	5	6	в				
ROW3	7)	8	9	C				
ROW4	*	0	(#)	D				

Tone (DTMF) Data Output Table

Low Group (Hz)	High Group (Hz)	Digit	OE	D3	D2	D1	DO
697	1209	1	Н	L	L	L	Н
697	1336	2	Н	L	L	Н	L
697	1477	3	Н	L	L	Н	Н
770	1209	4	Н	L	Н	L	L
770	1336	5	Н	L	Н	L	Н
770	1477	6	Н	L	Н	Н	L
852	1209	7	Н	L	Н	Н	Н
852	1336	8	Н	Н	L	L	L
852	1477	9	Н	Н	L	L	Н
941	1336	0	Н	Н	L	Н	L
941	1209	*	Н	Н	L	Н	Н
941	1477	#	Н	Н	Н	L	L
697	1633	Α	Н	Н	Н	L	Н
770	1633	В	Н	Н	Н	Н	L
852	1633	С	Н	Н	Н	Н	Н
941	1633	D	Н	L	L	L	L
_	_	ANY	L	Z	Z	Z	Z

Z: High impedance

Data output

The data outputs (D0~D3) are tri-state outputs. When OE input becomes low, the data outputs (D0~D3) are high impedance.

9

Application Circuits

Application circuit 1

Application circuit 2

C1 = C2 ≅ 39PF

10

Application circuit 3

8th Aug '97

11