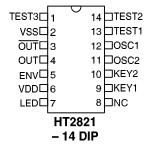
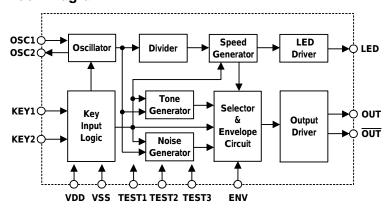


HT2821 Dual Sound Generator

Features


- Single power supply: 2.4V~3.3V
- Low standby current: $1\mu A$ (Typ.) at $V_{DD}=3V$
- Auto power-off function
- Two sections triggered by 2 input keys
- Built-in envelope control circuit
- Minimum external components
- Speaker or direct piezo application
- 1Hz~8Hz programmable LED flash output

General Description


The HT2821 is a CMOS LSI chip designed for use in sound effect products. It is equipped with two sound sections, tone circuit, noise circuit, and other control logic to generate various sounds including rifle fire, machine gun fire, bombing, door bell, alarm, and so on.

Customers are required to supply their sound samples — e.g., cassette tapes, CDs etc.— that can be analyzed and programmed into the IC by changing a mask layer during device fabrication. The HT2821 is suitable for various toy applications.

Pin Assignment

Block Diagram

Unit: mil

Pad Coordinates

Pad Coordinates						
			EN C	<u></u>	임	
VDD	1		13 1	2	11	
LED	2					
		4			10	VSS
		-	(0,0)		9	TEST3
					8 7	TEST2 TEST1
	3	4		5	6	
	KEY1	KEY2		OSC2	OSC1	

Pad No.	X	Y	Pad No.	X	Y
1	-32.725	32.275	8	32.937	-9.946
2	-32.725	24.140	9	32.937	-0.510
3	-32.725	-35.275	10	32.937	8.925
4	-15.385	-35.275	11	32.937	35.275
5	20.952	-35.275	12	16.022	35.275
6	32.937	-35.275	13	8.202	35.275
7	32.937	-17.595			

Chip size: $78 \times 83 \text{ (mil)}^2$

Absolute Maximum Ratings*

Supply Voltage0.3V to 5V	Storage Temperature50°C to 125°C
Input VoltageVSS-0.3 to VDD+0.3V	Operating Temperature0°C to 70°C

*Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damageto the device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of this specification is not implied and exposure to absolute maximum rating conditions for extended periods may affect device reliability.

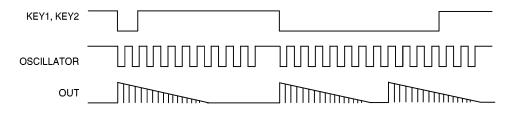
Electrical Characteristics

(Ta=25°C)

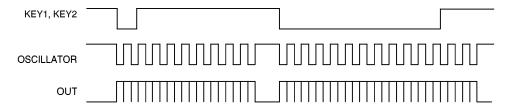
Crmbal	Parameter	Test Conditions		Min.	Tem	Max.	Unit
Symbol	Parameter	V_{DD}	Conditions	WIIII.	Тур.	widx.	Oiiit
V_{DD}	Operating Voltage	_	_	2.4	3	3.3	V
Istb	Standby Current	3V	_	_	1	5	μΑ
I_{DD}	Operating Current	3V	No load	_	300	600	μΑ
I _{OH}	Output Source Current	3V	$V_{OH}=2.5V$	-1	-2	_	mA
IoL	Output Sink Current	3V	V _{OL} =0.5V	1	2	_	mA
IENV	ENV Source Current	3V	V _{OH} =2.5V	-1	-2	_	mA

^{*} The IC substrate should be connected to VDD in the PCB layout artwork

Cumbal	Danamatan	Test Conditions		Min.	Tem	Max.	Unit
Symbol	Parameter	V_{DD}	Conditions	WIIII.	Тур.	Max.	Oint
I _{LED}	LED Source Current	3V	V _{OH} =2.5V	-1	-2	_	mA
Fosc	Oscillator Frequency	_	R=180kΩ	_	128	_	kHz
V _{IH}	"H" Input Voltage	3V	_	2.4	_	_	V
$V_{\rm IL}$	"L" Input Voltage	3V	_	_		0.6	V

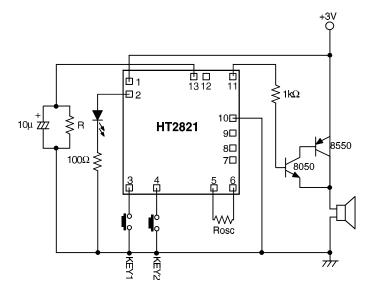

Pin Description

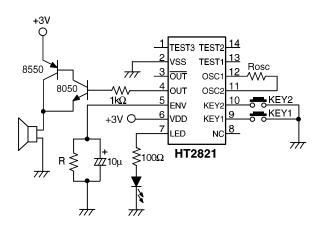
Pin No.	Pin Name	I/O	Description
1	TEST3	О	For IC test only
2	VSS	_	Negative power supply, GND
3	OUT	О	Tone output, out of phase to pin 4
4	OUT	О	Tone output for driving a transistor
5	ENV	Ι	RC envelope effect
6	VDD	_	Positive power supply
7	LED	О	LED flash output
8	NC	_	No connection
9	KEY1	Ι	KEY1 input, active low
10	KEY2	Ι	KEY2 input, active low
11	OSC2	О	Oscillator output
12	OSC1	Ι	Oscillator input
13	TEST1	О	For IC test only
14	TEST2	О	For IC test only



Timing Diagram

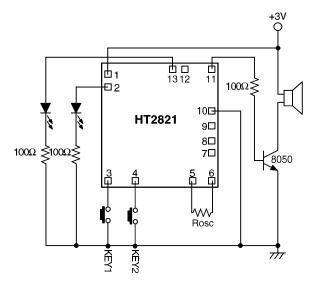
With an envelope


No envelope

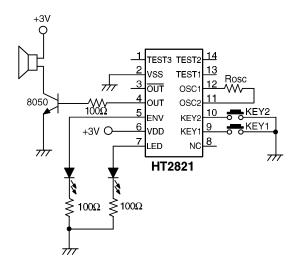


Application Circuits

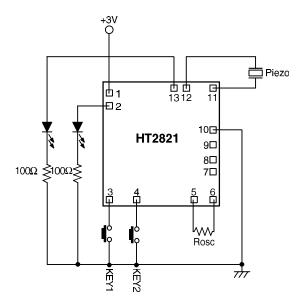
With an envelope



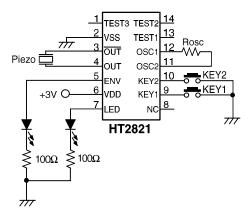
* The IC substrate should be conected to VDD in the PCB layout artwork.



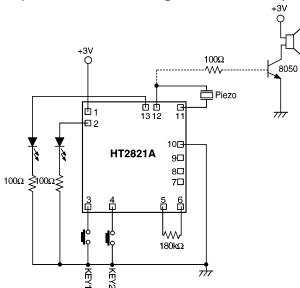
Without an envelope



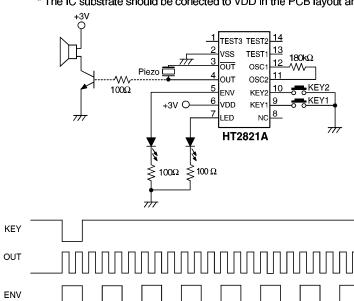
* The IC substrate should be conected to VDD in the PCB layout artwork.



Drive piezo



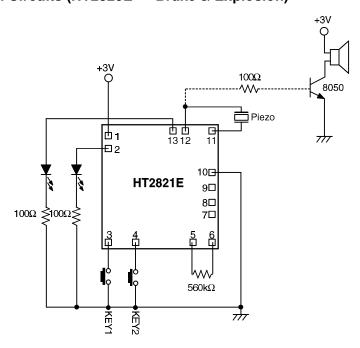
* The IC substrate should be conected to VDD in the PCB layout artwork.



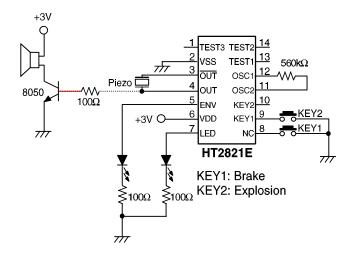
Application Circuits (HT2821A — Bombing & Machine Gun)

* The IC substrate should be conected to VDD in the PCB layout artwork.

KEY1: Machine Gun KEY2: Bombing


LED

(KEY2)T = 2 secWhen Fosc = 128kHz


(KEY1)T = 1 sec

Application Circuits (HT2820E — Brake & Explosion)

* The IC substrate should be conected to VDD in the PCB layout artwork.

