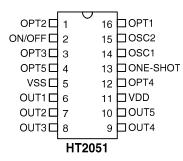


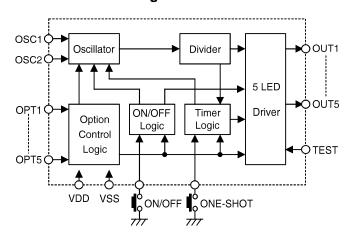
HT2051 Five LAMP/LED Flash Driver

Features

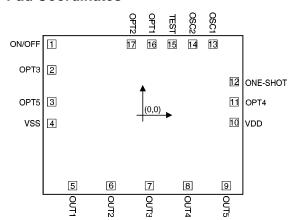

- CMOS Metal-Gate process technology
- Operating voltage: 1.2V~4.5V
- Low stand-by current: 1μA at 3V (Typ.)
- A five lamp flash driver with a 10mA driving capability
- · Random or sequential flash selection
- · Up or Down sequential flash selection
- One-shot mode or on/off mode selection
- Two flash timer selection in one-shot mode
- Output all-On or all-Off selection in standby mode
- 1/10 duty cycle output
- · A built-in oscillator
- Minimum external components

General Description

The HT2051 is a low cost, low-power CMOS LSI chip designed for lamps and LED flash drivers. It contains five flash outputs with a 10mA driving capability that can be implemented in many different ways such as random flashers, sequential Up/Down flashers, One-Shot mode and


On/Off mode — all of which are controlled by the options selected on pads. The chip requires only one external resistor for normal applications. It is very suitable for use in flash products such as disco lights, fancy hats, gift cards, X'mas decoration, etc.

Pin Assignment


Block Diagram

1

Pad Coordinates Unit: mil

Pad No.	X	Y	Pad No.	X	Y	
1	-30.4	23.7	10	30.3	-2.35	
2	-30.4	15.15	11	30.3	4.5	
3	-30.4	4.5	12	30.35	11.25	
4	-30.4	-2.7	13	23.3	23.7	
5	-23.5	-23.45	14	16.5	23.7	
6	-10.7	-23.45	15	9.7	23.7	
7	2.1	-23.45	16	2.9	23.7	
8	14.9	-23.45	17	-3.9	23.7	
9	27.7	-23.45				

Chip size: $71 \times 58 \text{ (mil)}^2$

Pad Description

Pad No.	Pad Name	I/O	Description	
1	ON/OFF	I	Toggle on/off control	
2	OPT3	I	Sequential flash up/down selection	
3	OPT5	I	Output all-on or all-off selection in stand-by mode	
4	VSS	I	Negative power supply, GND	
5	OUT1	О	Lamp/LED flash drive output	
6	OUT2	О	Lamp/LED flash drive output	
7	OUT3	О	Lamp/LED flash drive output	
8	OUT4	О	Lamp/LED flash drive output	
9	OUT5	О	Lamp/LED flash drive output	
10	VDD	I	Positive power supply	
11	OPT4	I	Two flash time selections in one-shot mode	
12	ONE-SHOT	I	One-shot input	
13	OSC1	I	Oscillator input	
14	OSC2	О	Oscillator output	
15	TEST1	I/O	For IC test only	
16	OPT1	I	One-shot or on/off type selection	
17	OPT2	I	Random or sequential flash selection	

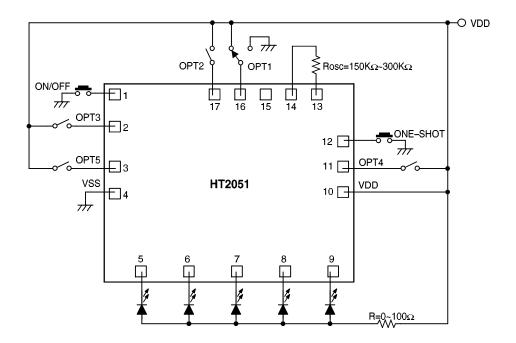
 $[\]ensuremath{^{*}}$ The IC substrate should be connected to VDD in the PCB layout artwork.

Note: (a) OPT1 = VSS \rightarrow On/Off type OPT1 = VDD \rightarrow One-shot type (b) OPT2 = Open \rightarrow Random flash OPT2 = VDD \rightarrow Sequential flash (c) OPT3 = Open \rightarrow Down sequence flash OPT3 = VDD \rightarrow Up/Down sequence flash (d) OPT4 = Open \rightarrow Short flash time OPT4 = VDD \rightarrow Long flash time in the one-shot mode (e) OPT5 = Open \rightarrow Stand-by output all-off OPT5 = VDD \rightarrow Stand-by output all-on

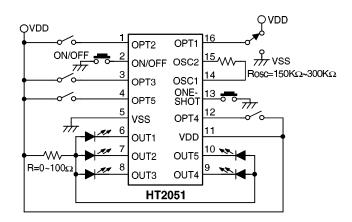
Absolute Maximum Ratings

Supply Voltage0.3V to 5V	Storage Temperature $-50^{\circ}C$ to $125^{\circ}C$
Input/Output Voltage V _{SS} -0.3V to V _{DD} +0.3V	Operating Temperature0°C to 70°C

Electrical Characteristics


 $(Ta=25^{\circ}C)$

Symbol	Parameter	Test Condition		Min	Т	Mari	Unit
	Parameter	V _{DD}	Condition	Min.	Тур.	Max.	Onit
V_{DD}	Operating Voltage	_	_	1.2	3	4.5	V
Istb	Stand-by Current	3V		_	1	2	μΑ
I_{DD}	Operating Current	3V	No load	_	200	500	μΑ
I_{OL}	Output Sink Current	1.5V	$V_{OL}=0.5V$	5	8	_	mA
		3V	$V_{OL}=0.5V$	10	15	_	mA
Fosc	Oscillator Frequency		R=150K~300KΩ	_	64K	_	Hz


3 10th June '97

Application Circuit

* The IC substrate should be connected to VDD in PCB layout artwork.

4 10th June '97